dcsimg
 

Medical Devices

Blog posts and articles about using data analysis and statistics in quality improvement initiatives in the medical devices industry.

"You take 10 parts and have 3 operators measure each 2 times." This standard approach to a Gage R&R experiment is so common, so accepted, so ubiquitous that few people ever question whether it is effective.  Obviously one could look at whether 3 is an adequate number of operators or 2 an adequate number of replicates, but in this first of a series of posts about "Gauging Gage," I want to look at... Continue Reading
In its industry guidance to companies that manufacture drugs and biological products for people and animals, the Food and Drug Administration (FDA) recommends three stages for process validation: Process Design, Process Qualification, and Continued Process Verification. In this post, we we will focus on that third stage. Stage 3: Continued Process Verification Per the FDA guidelines, the goal of... Continue Reading

7 Deadly Statistical Sins Even the Experts Make

Do you know how to avoid them?

Get the facts >
Process validation is vital to the success of companies that manufacture drugs and biological products for people and animals. According to the FDA guidelines published by the U.S. Department of Health and Human Services: “Process validation is defined as the collection and evaluation of data, from the process design state through commercial production, which establishes scientific evidence that a... Continue Reading
The line plot is an incredibly agile but frequently overlooked tool in the quest to better understand your processes. In any process, whether it's baking a cake or processing loan forms, many factors have the potential to affect the outcome. Changing the source of raw materials could affect the strength of plywood a factory produces. Similarly, one method of gluing this plywood might be better... Continue Reading
The ultimate goal of most quality improvement projects is clear: reducing the number of defects, improving a response, or making a change that benefits your customers. We often want to jump right in and start gathering and analyzing data so we can solve the problems. Checking your measurement systems first, with methods like attribute agreement analysis or Gage R&R, may seem like a needless waste... Continue Reading
We’ve got a plethora of case studies showing how businesses from different industries solve problems and implement solutions with data analysis. Take a look for ideas about how you can use data analysis to ensure excellence at your business! Boston Scientific, one of the world’s leading developers of medical devices, is just one organization who has shared their story. A team at their Heredia,... Continue Reading
There may be huge potential benefits waiting in the data in your servers. These data may be used for many different purposes. Better data allows better decisions, of course. Banks, insurance firms, and telecom companies already own a large amount of data about their customers. These resources are useful for building a more personal relationship with each customer. Some organizations already use... Continue Reading
I thought 3 posts would capture all the thoughts I had about B10 Life. That is, until this question appeared on the Minitab LinkedIn group: In case you missed it, my first post, How to Calculate B10 Life with Statistical Software, explains what B10 life is and how Minitab calculates this value. My second post, How to Calculate BX Life, Part 2, shows how to compute any BX life in Minitab. But... Continue Reading
If you're just getting started in the world of quality improvement, or if you find yourself in a position where you suddenly need to evaluate the quality of incoming or outgoing products from your company, you may have encountered the term "acceptance sampling." It's a statistical method for evaluating the quality of a large batch of materials from a small sample of items, which statistical softwar... Continue Reading
Whatever industry you're in, you're going to need to buy supplies. If you're a printer, you'll need to purchase inks, various types of printing equipment, and paper. If you're in manufacturing, you'll need to obtain parts that you don't make yourself.  But how do you know you're making the right choice when you have multiple suppliers vying to fulfill your orders?  How can you be sure you're... Continue Reading
by Erwin Gijzen, Guest Blogger People who work in quality improvement know that the root causes of quality issues are hard to find. A typical production process can contain hundreds of potential causes. Additionally, companies often produce products with multiple quality requirements, such as dimensions, surface appearance, and impact resistance. With so many variables, it’s no wonder many companies... Continue Reading
The Cp and Cpk are well known capability indices commonly used to ensure that a process spread is as small as possible compared to the tolerance interval (Cp), or that it stays well within specifications (Cpk). Yet another type of capability index exists: the Cpm, which is much less known and used less frequently. The main difference between the Cpm and the other capability indices is that the... Continue Reading
In technical support, we frequently receive calls from Minitab users who have questions about the differences between Cpk and Ppk.  Michelle Paret already wrote a great post about the differences between Cpk and Ppk, but it also helps to have a better understanding of the math behind these numbers. So in this post I will show you how to calculate Ppk using Minitab’s default settings when the... Continue Reading
Suppose that you plan to source a substantial amount of parts or subcomponents from a new supplier. To ensure that their quality level is acceptable to you, you might want to assess the capability levels (Ppk and Cpk indices) of their manufacturing processes and check whether their critical process parameters are fully under control (using control charts). If you are not sure about the efficiency... Continue Reading
In Parts 1 and 2 of Gauging Gage we looked at the numbers of parts, operators, and replicates used in a Gage R&R Study and how accurately we could estimate %Contribution based on the choice for each.  In doing so, I hoped to provide you with valuable and interesting information, but mostly I hoped to make you like me.  I mean like me so much that if I told you that you were doing... Continue Reading
In Part 1 of Gauging Gage, I looked at how adequate a sampling of 10 parts is for a Gage R&R Study and providing some advice based on the results. Now I want to turn my attention to the other two factors in the standard Gage experiment: 3 operators and 2 replicates.  Specifically, what if instead of increasing the number of parts in the experiment (my previous post demonstrated you would need... Continue Reading
We're frequently asked whether Minitab has been validated by the U.S. Food and Drug Administration (FDA) for use in the pharmaceutical and medical device industries. Minitab does extensive testing to validate our software internally, but Minitab’s statistical software is not—and cannot be—FDA-validated out-of-the-box. Nobody's can. It is a common misconception that software vendors can go through a... Continue Reading
Recently, a customer called our Technical Support team about a Design of Experiment he was performing in Minitab Statistical Software. After they helped to answer his question, the researcher pointed our team to an interesting DOE he and his colleagues conducted that involved using nasal casts to predict the drug delivery of nasal spray. The study has already been published, and you can read... Continue Reading
All processes are affected by various sources of variations over time. Products which are designed based on optimal settings, will, in reality, tend to drift away from their ideal settings during the manufacturing process. Environmental fluctuations and process variability often cause major quality problems. Focusing only on costs and performances is not enough. Sensitivity to deterioration and... Continue Reading
When I talk to quality professionals about how they use statistics, one tool they mention again and again is design of experiments, or DOE. I'd never even heard the term before I started getting involved in quality improvement efforts, but now that I've learned how it works, I wonder why I didn't learn about it sooner. If you need to find out how several factors are affecting a process outcome,... Continue Reading