# Normal Distribution

Blog posts and articles about the role of the normal distribution in statistics, data analysis, and quality improvement.

As we start off 2018, our eyes are on the winter weather, specifically low temperatures and snowfall. After 2015-2016's warmest winter on record and Chicago breaking records in 2017 with no snow sticking to the ground in January or February, our luck might have run out. We shall see, though. The Old Farmer's Almanac is reporting that 2017-2018 winter temperatures will be colder than last winter. If... Continue Reading
Control charts take data about your process and plot it so you can distinguish between common-cause and special-cause variation. Knowing the difference is important because it permits you to address potential problems without over-controlling your process.   Control charts are fantastic for assessing the stability of a process. Is the process mean unstable, too low, or too high? Is observed... Continue Reading
In statistics, as in life, absolute certainty is rare. That's why statisticians often can't provide a result that is as specific as we might like; instead, they provide the results of an analysis as a range, within which the data suggest the true answer lies. Most of us are familiar with "confidence intervals," but that's just of several different kinds of intervals we can use to characterize the... Continue Reading
If you have a process that isn’t meeting specifications, using the Monte Carlo simulation and optimization tools in Companion by Minitab can help. Here’s how you, as an engineer in the medical device industry, could use Companion to improve a packaging process and help ensure patient safety. Your product line at AlphaGamma Medical Devices is shipped in heat-sealed packages with a minimum seal... Continue Reading
How many samples do you need to be “95% confident that at least 95%—or even 99%—of your product is good? The answer depends on the type of response variable you are using, categorical or continuous. The type of response will dictate whether you 'll use: Attribute Sampling: Determine the sample size for a categorical response that classifies each unit as Good or Bad (or, perhaps, In-spec or... Continue Reading
Have you ever had a probability plot that looks like this? The probability plot above is based on patient weight (in pounds) after surgery minus patient weight (again, in pounds) before surgery. The red line appears to go through the data, indicating a good fit to the Normal, but there are clusters of plotting points at the same measured value. This occurs on a probability plot when there are many... Continue Reading
If you have a process that isn’t meeting specifications, using Monte Carlo simulation and optimization can help. Companion by Minitab offers a powerful, easy-to-use tool for Monte Carlo simulation and optimization, and in this blog we'll look at the case of product engineers involved in steel production for automobile parts, and how they could use Companion to improve a process. The tensile... Continue Reading
Last week I was fielding questions on social media about Minitab 18, the latest version of our statistical software. Almost as soon as the new release was announced, we received a question that comes up often from people in pharmaceutical and medical device companies: "Is Minitab 18 FDA-validated?" How Software Gets Validated That's a great question. To satisfy U.S. Food and Drug Administration (FDA)... Continue Reading
The 1949 film A Connecticut Yankee in King Arthur's Court includes the song “Busy Doing Nothing,” and this could be written about the Null Hypothesis as it is used in statistical analyses.  The words to the song go: We're busy doin' nothin'Workin' the whole day through Tryin' to find lots of things not to do And that summarises the role of the Null Hypothesis perfectly. Let me explain why. What's... Continue Reading
One highlight of writing for and editing the Minitab Blog is the opportunity to read your responses and answer your questions. Sometimes, to my chagrin, you point out that we've made a mistake. However, I'm particularly grateful for those comments, because it permits us to correct inadvertent errors.  I feared I had an opportunity to fix just such an error when I saw this comment appear on one of... Continue Reading
If you have a process that isn’t meeting specifications, using the Monte Carlo simulation and optimization tool in Companion by Minitab can help. Here’s how you, as a chemical technician for a paper products company, could use Companion to optimize a chemical process and ensure it consistently delivers a paper product that meets brightness standards. The brightness of Perfect Papyrus Company’s new... Continue Reading
In Parts 1 and 2 of Gauging Gage we looked at the numbers of parts, operators, and replicates used in a Gage R&R Study and how accurately we could estimate %Contribution based on the choice for each.  In doing so, I hoped to provide you with valuable and interesting information, but mostly I hoped to make you like me.  I mean like me so much that if I told you that you were doing... Continue Reading
by Kevin Clay, guest blogger In transactional or service processes, we often deal with lead-time data, and usually that data does not follow the normal distribution. Consider a Lean Six Sigma project to reduce the lead time required to install an information technology solution at a customer site. It should take no more than 30 days—working 10 hours per day Monday–Friday—to complete, test and... Continue Reading
Welcome to the Hypothesis Test Casino! The featured game of the house is roulette. But this is no ordinary game of roulette. This is p-value roulette! Here’s how it works: We have two roulette wheels, the Null wheel and the Alternative wheel. Each wheel has 20 slots (instead of the usual 37 or 38). You get to bet on one slot. What happens if the ball lands in the slot you bet on? Well, that depends... Continue Reading
As a person who loves baking (and eating) cakes, I find it bothersome to go through all the effort of baking a cake when the end result is too dry for my taste. For that reason, I decided to use a designed experiment in Minitab to help me reduce the moisture loss in baked chocolate cakes, and find the optimal settings of my input factors to produce a moist baked chocolate cake. I’ll share the... Continue Reading
by Matthew Barsalou, guest blogger.  The old saying “if it walks like a duck, quacks like a duck and looks like a duck, then it must be a duck” may be appropriate in bird watching; however, the same idea can’t be applied when observing a statistical distribution. The dedicated ornithologist is often armed with binoculars and a field guide to the local birds and this should be sufficient. A... Continue Reading
T'was the season for toys recently, and Christmas day found me playing around with a classic, the Etch-a-Sketch. As I noodled with the knobs, I had a sudden flash of recognition: my drawing reminded me of the Empirical CDF Plot in Minitab Statistical Software. Did you just ask, "What's a CDF plot? And what's so empirical about it?" Both very good questions. Let's start with the first, and we'll... Continue Reading
In my last post on DMAIC tools for the Define phase, we reviewed various graphs and stats typically used to define project goals and customer deliverables. Let’s now move along to the tools you can use in Minitab Statistical Software to conduct the Measure phase. Measure Phase Methodology The goal of this phase is to measure the process to determine its current performance and quantify the problem.... Continue Reading
by Matthew Barsalou, guest blogger The great Dr. Seuss tells of Mr. Plunger, who is the custodian at Diffendoofer School on the corner of Dinkzoober and Dinzott in the town of Dinkerville. The good Mr. Plunger “keeps the whole school clean” using a supper-zooper-flooper-do. Unfortunately, Dr. Seuss fails to tell us where the supper-zooper-flooper-do came from and if the production process was... Continue Reading
The language of statistics is a funny thing, but there usually isn't much to laugh at in the consequences that can follow when misunderstandings occur between statisticians and non-statisticians. We see these consequences frequently in the media, when new studies—that usually contradict previous ones—are breathlessly related, as if their findings were incontrovertible facts. Similar, though less... Continue Reading