dcsimg
 

Process Analysis

Blog posts and articles about analyzing processes as part of quality improvement efforts such as Lean and Six Sigma.

People can make mistakes when they test a hypothesis with statistical analysis. Specifically, they can make either Type I or Type II errors. As you analyze your own data and test hypotheses, understanding the difference between Type I and Type II errors is extremely important, because there's a risk of making each type of error in every analysis, and the amount of risk is in your control.    So if... Continue Reading
Welcome to the Hypothesis Test Casino! The featured game of the house is roulette. But this is no ordinary game of roulette. This is p-value roulette! Here’s how it works: We have two roulette wheels, the Null wheel and the Alternative wheel. Each wheel has 20 slots (instead of the usual 37 or 38). You get to bet on one slot. What happens if the ball lands in the slot you bet on? Well, that depends... Continue Reading

7 Deadly Statistical Sins Even the Experts Make

Do you know how to avoid them?

Get the facts >
Right now I’m enjoying my daily dose of morning joe. As the steam rises off the cup, the dark rich liquid triggers a powerful enzyme cascade that jump-starts my brain and central nervous system, delivering potent glints of perspicacity into the dark crevices of my still-dormant consciousness. Feels good, yeah! But is it good for me? Let’s see what the studies say… Drinking more than 4 cups of coffee... Continue Reading
To make objective decisions about the processes that are critical to your organization, you often need to examine categorical data. You may know how to use a t-test or ANOVA when you’re comparing measurement data (like weight, length, revenue, and so on), but do you know how to compare attribute or counts data? It easy to do with statistical software like Minitab.  One person may look at this bar... Continue Reading
by Rehman Khan, guest blogger There are many articles giving Minitab tips already, so to be different I have done mine in the style of my books, which use example-based learning. All ten tips are shown using a single example. If you don’t already know these 10 tips you will get much more benefit if you work along with the example. You don’t need to download any files to work along—although, if you... Continue Reading
In its industry guidance to companies that manufacture drugs and biological products for people and animals, the Food and Drug Administration (FDA) recommends three stages for process validation. While my last post covered statistical tools for the Process Design stage, here we will focus on the statistical techniques typically utilized for the second stage, Process Qualification. Stage 2: Process... Continue Reading
Previously, I discussed how business problems arise when people have conflicting opinions about a subjective factor, such as whether something is the right color or not, or whether a job applicant is qualified for a position. The key to resolving such honest disagreements and handling future decisions more consistently is a statistical tool called attribute agreement analysis. In this post, we'll... Continue Reading
In my last post on DMAIC tools for the Define phase, we reviewed various graphs and stats typically used to define project goals and customer deliverables. Let’s now move along to the tools you can use in Minitab Statistical Software to conduct the Measure phase. Measure Phase Methodology The goal of this phase is to measure the process to determine its current performance and quantify the problem.... Continue Reading
Process validation is vital to the success of companies that manufacture drugs and biological products for people and animals. According to the FDA guidelines published by the U.S. Department of Health and Human Services: “Process validation is defined as the collection and evaluation of data, from the process design state through commercial production, which establishes scientific evidence that a... Continue Reading
by Matthew Barsalou, guest blogger The great Dr. Seuss tells of Mr. Plunger, who is the custodian at Diffendoofer School on the corner of Dinkzoober and Dinzott in the town of Dinkerville. The good Mr. Plunger “keeps the whole school clean” using a supper-zooper-flooper-do. Unfortunately, Dr. Seuss fails to tell us where the supper-zooper-flooper-do came from and if the production process was... Continue Reading
When you’re working in Minitab and prepping your data for analysis, it’s common to group data into categories that imply a specific order, such as Low, Medium, High or Beginning, Middle, End. But if the data were to appear in a different order in tables and graphs (for example, Beginning, End, Middle), the result could be confusing, and might distract from your message. Fortunately, with Minitab’s va... Continue Reading
For all you creative and fun-loving folks out there, in this blog post I'm going to share a puzzle instead of a story or lesson. The holiday season is getting into full swing here in the United States, and that gives us an opportunity to pause and reflect, and even have a little fun while still thinking about how we can improve our processes and products.   Perhaps you're wondering what a puzzle... Continue Reading
In Parts 1 and 2 of this blog series, I wrote about how statistical inference uses data from a sample of individuals to reach conclusions about the whole population. That’s a very powerful tool, but you must check your assumptions when you make statistical inferences. Violating any of these assumptions can result in false positives or false negatives, thus invalidating your results.  The common... Continue Reading
The season of change is upon us here at Minitab's World Headquarters. The air is crisp and clear and the landscape is ablaze in vibrant fall colors. As I drove to work one recent morning, I couldn't help but soak in the beauty surrounding me and think, "Too bad everything they taught me as a kid was a lie." You see, as a boy growing up in New Hampshire, I was told that the sublime beauty of autumn... Continue Reading
Pareto charts are a special type of bar chart you can use to prioritize almost anything. This makes them very useful in making sound decisions. For example, if you have several possible quality improvement projects, but not enough time or people to do them all now, you can use a Pareto chart to identify which projects have the most potential for making meaningful improvement. Pareto charts look... Continue Reading
In Part 1 of this blog series, I wrote about how statistical inference uses data from a sample of individuals to reach conclusions about the whole population. That’s a very powerful tool, but you must check your assumptions when you make statistical inferences. Violating any of these assumptions can result in false positives or false negatives, thus invalidating your results.  The common data... Continue Reading
If your work involves quality improvement, you've at least heard of Design of Experiments (DOE). You probably know it's the most efficient way to optimize and improve your process. But many of us find DOE intimidating, especially if it's not a tool we use often. How do you select an appropriate design, and ensure you've got the right number of factors and levels? And after you've gathered your... Continue Reading
No matter how experienced you are at analyzing data, communicating about your results can be a tremendous challenge. So it's not surprising that "Effectively Reporting Your Data Analysis" was one of the best-attended sessions at the inaugural Minitab Insights Conference last month.  The presenters, Benjamin Turcan and Jennifer Berner of First Niagara Bank, have a great deal of experience improving... Continue Reading
Every day, thousands of people withdraw extra cash for daily expenses. Each transaction may be small, but the total amount of cash dispersed over hundreds or thousands of daily transactions can be very high. But every bank branch has a fixed cash flow, which must be set without knowing what each customer will need on a given day. This creates a challenge for financial entities. Customers expect... Continue Reading
Data mining can be helpful in the exploratory phase of an analysis. If you're in the early stages and you're just figuring out which predictors are potentially correlated with your response variable, data mining can help you identify candidates. However, there are problems associated with using data mining to select variables. In my previous post, we used data mining to settle on the following... Continue Reading