dcsimg
 

Process Management Quality

Blog posts and articles about managing the quality of processes with statistical and data analysis tools.

Do your executives see how your quality initiatives affect the bottom line? Perhaps they would more often if they had accessible insights on the performance, and ultimately the overall impact, of improvement projects.  For example, 60% of the organizations surveyed by the American Society for Quality in their 2016 Global State of Quality study say they don’t know or don’t measure the financial... Continue Reading
Right now I’m enjoying my daily dose of morning joe. As the steam rises off the cup, the dark rich liquid triggers a powerful enzyme cascade that jump-starts my brain and central nervous system, delivering potent glints of perspicacity into the dark crevices of my still-dormant consciousness. Feels good, yeah! But is it good for me? Let’s see what the studies say… Drinking more than 4 cups of coffee... Continue Reading

LIVE WEBINAR | MAY 4, 10:00 AM EST

Smarter Process Improvement

with Companion by Minitab

SIGN UP TODAY >
 
Have you ever wished your control charts were better?  More effective and user-friendly?  Easier to understand and act on?  In this post, I'll share some simple ways to make SPC monitoring more effective in Minitab. Common Problems with SPC Control Charts I worked for several years in a large manufacturing plant in which control charts played a very important role. Virtually thousands of SPC... Continue Reading
by Matthew Barsalou, guest blogger The great Dr. Seuss tells of Mr. Plunger, who is the custodian at Diffendoofer School on the corner of Dinkzoober and Dinzott in the town of Dinkerville. The good Mr. Plunger “keeps the whole school clean” using a supper-zooper-flooper-do. Unfortunately, Dr. Seuss fails to tell us where the supper-zooper-flooper-do came from and if the production process was... Continue Reading
Every day, thousands of people withdraw extra cash for daily expenses. Each transaction may be small, but the total amount of cash dispersed over hundreds or thousands of daily transactions can be very high. But every bank branch has a fixed cash flow, which must be set without knowing what each customer will need on a given day. This creates a challenge for financial entities. Customers expect... Continue Reading
If you were among the 300 people who attended the first-ever Minitab Insights conference in September, you already know how powerful it was. Attendees learned how practitioners from a wide range of industries use data analysis to address a variety of problems, find solutions, and improve business practices. In the coming weeks and months, we will share more of the great insights and guidance shared... Continue Reading
I confess: I'm not a natural-born decision-maker. Some people—my wife, for example—can assess even very complex situations, consider the options, and confidently choose a way forward. Me? I get anxious about deciding what to eat for lunch. So you can imagine what it used to be like when I needed to confront a really big decision or problem. My approach, to paraphrase the Byrds, was "Re:... Continue Reading
The other day I was talking with a friend about control charts, and I wanted to share an example one of my colleagues wrote on the Minitab Blog.  Looking back through the index for "control charts" reminded me just how much material we've published on this topic. Whether you're just getting started with control charts, or you're an old hand at statistical process control, you'll find some valuable... Continue Reading
When I blogged about automation back in March, I made my husband out to be an automation guru. Well, he certainly is. But what you don’t know about my husband is that while he loves to automate everything in his life, sometimes he drops the ball. He’s human; even I have to cut him a break every now and then. On the other hand, instances of hypocrisy in his behavior tend to make for a good story.... Continue Reading
by Matthew Barsalou, guest blogger Control charts plot your process data to identify and distinguish between common cause and special cause variation. This is important, because identifying the different causes of variation lets you take action to make improvements in your process without over-controlling it. When you create a control chart, the software you're using should make it easy to see where... Continue Reading
This is an era of massive data. A huge amount of data is being generated from the web and from customer relations records, not to mention also from sensors used in the manufacturing industry (semiconductor, pharmaceutical, petrochemical companies and many other industries). Univariate Control Charts In the manufacturing industry, critical product characteristics get routinely collected to ensure... Continue Reading
by Laerte de Araujo Lima, guest blogger The NBA's 2015-16 season will be one for the history books. Not only was it the last season of Kobe Bryan, who scored 60 points in his final game, but the Golden State Warriors set a new wins record, beating the previous record set by 1995-96 Chicago Bulls. The Warriors seem likely to take this season's NBA title, in large part thanks to the performance of... Continue Reading
While the roots of Lean Six Sigma and other quality improvement methodologies are in manufacturing, it’s interesting to see how other organizational functions and industries apply LSS tools successfully. Quality improvement certainly has moved far beyond the walls of manufacturing plants! For example, I recently had the opportunity to talk to Drew Mohler, a Lean Six Sigma black belt and senior... Continue Reading
We use statistics to arm ourselves with more information. That information allows us to make more informed decisions. And the sooner we can obtain this information, the better. For example, suppose one of your manufacturing machines starts to malfunction and makes your products out of spec. You don't want to wait until the product reaches customers before you discover this information. Then it's... Continue Reading
By Matthew Barsalou, guest blogger A problem must be understood before it can be properly addressed. A thorough understanding of the problem is critical when performing a root cause analysis (RCA) and an RCA is necessary if an organization wants to implement corrective actions that truly address the root cause of the problem. An RCA may also be necessary for process improvement projects; it is... Continue Reading
By Matthew Barsalou, guest blogger Teaching process performance and capability studies is easier when actual process data is available for the student or trainee to practice with. As I have previously discussed at the Minitab Blog, a catapult can be used to generate data for a capability study. My last blog on using a catapult for this purspose was several years ago, so I would like to revisit... Continue Reading
Step 1 in our DOE problem-solving methodology is to use process experts, literature, or past experiments to characterize the process and define the problem. Since I had little experience with golf myself, this was an important step for me. This is not an uncommon situation. Experiment designers often find themselves working on processes that they have little or no experience with. For example, a... Continue Reading
by Colin Courchesne, guest blogger, representing his Governor's School research team.   High-level research opportunities for high school students are rare; however, that was just what the New Jersey Governor’s School of Engineering and Technology provided.  Bringing together the best and brightest rising seniors from across the state, the Governor’s School, or GSET for short, tasks teams of... Continue Reading
By Matthew Barsalou, guest blogger.   Many statistical tests assume the data being tested came from a normal distribution. Violating the assumption of normality can result in incorrect conclusions. For example, a Z test may indicate a new process is more efficient than an older process when this is not true. This could result in a capital investment for equipment that actually results in higher... Continue Reading
By Erwin Gijzen, Guest Blogger In my previous post, we assessed the out-of-spec level for a process with capability analysis and visualized process variability using a control chart. Our goal is to reduce variability, but when a process has a multitude of categorical and continuous variables, identifying root causes can be a huge challenge. Analyzing covariance—using the statistical technique... Continue Reading