Regression Analysis

Blog posts and articles about regression analysis methods applied to Lean and Six Sigma projects.

This week is the annual Thanksgiving holiday in the United States, a period where we are encouraged to eat turkey and cranberries, then consider the blessings in our lives before falling into a comfortable pre-football nap. That includes many of us here at Minitab.  Consequently, we won't have new posts for you over the next two days.  But one of the things I'm grateful for is having had the... Continue Reading
Did you ever wonder why statistical analyses and concepts often have such weird, cryptic names? One conspiracy theory points to the workings of a secret committee called the ICSSNN. The International Committee for Sadistic Statistical Nomenclature and Numerophobia was formed solely to befuddle and subjugate the masses. Its mission: To select the most awkward, obscure, and confusing name possible... Continue Reading
By Matthew Barsalou, guest blogger A problem must be understood before it can be properly addressed. A thorough understanding of the problem is critical when performing a root cause analysis (RCA) and an RCA is necessary if an organization wants to implement corrective actions that truly address the root cause of the problem. An RCA may also be necessary for process improvement projects; it is... Continue Reading
In Part 5 of our series, we began the analysis of the experiment data by reviewing analysis of covariance and blocking variables, two key concepts in the design and interpretation of your results. The 250-yard marker at the Tussey Mountain Driving Range, one of the locations where we conducted our golf experiment. Some of the golfers drove their balls well beyond this 250-yard maker during a few of... Continue Reading
In Part 3 of our series, we decided to test our 4 experimental factors, Club Face Tilt, Ball Characteristics, Club Shaft Flexibility, and Tee Height in a full factorial design because of the many advantages of that data collection plan. In Part 4 we concluded that each golfer should replicate their half fraction of the full factorial 5 times in order to have a high enough power to detect... Continue Reading
With Speaker John Boehner resigning, Kevin McCarthy quitting before the vote for him to be Speaker, and a possible government shutdown in the works, the Freedom Caucus has certainly been in the news frequently! Depending on your political bent, the Freedom Caucus has caused quite a disruption for either good or bad.  Who are these politicians? The Freedom Caucus is a group of approximately 40... Continue Reading
Step 3 in our DOE problem solving methodology is to determine how many times to replicate the base experiment plan. The discussion in Part 3 ended with the conclusion that our 4 factors could best be studied using all 16 combinations of the high and low settings for each factor, a full factorial. Each golfer will perform half of the sixteen possible combinations and each golfer’s data could stand as... Continue Reading
Step 2 in our DOE problem-solving methodology is to design the data collection plan you will use to study the factors in your experiment. Of course, you will have to incorporate blocking and covariates in your experiment design, as well as calculate the number of replications of run conditions needed in order to be confident in your results. We will address these topics in future posts, but for... Continue Reading
I recently guest lectured for an applied regression analysis course at Penn State. Now, before you begin making certain assumptions—because as any statistician will tell you, assumptions are important in regression—you should know that I have no teaching experience whatsoever, and I’m not much older than the students I addressed. I’m just 5 years removed from my undergraduate days at Virginia Tech,... Continue Reading
If you use ordinary linear regression with a response of count data, if may work out fine (Part 1), or you may run into some problems (Part 2). Given that a count response could be problematic, why not use a regression procedure developed to handle a response of counts? A Poisson regression analysis is designed to analyze a regression model with a count response. First, let's try using Poisson... Continue Reading
My previous post showed an example of using ordinary linear regression to model a count response. For that particular count data, shown by the blue circles on the dot plot below, the model assumptions for linear regression were adequately satisfied. But frequently, count data may contain many values equal or close to 0. Also, the distribution of the counts may be right-skewed. In the quality field,... Continue Reading
Ever use dental floss to cut soft cheese? Or Alka Seltzer to clean your toilet bowl? You can find a host of nonconventional uses for ordinary objects online. Some are more peculiar than others. Ever use ordinary linear regression to evaluate a response (outcome) variable of counts?  Technically, ordinary linear regression was designed to evaluate a a continuous response variable. A continuous... Continue Reading
In 2007, the Crayola crayon company encountered a problem. Labels were coming off of their crayons. Up to that point, Crayola had done little to implement data-driven methodology into the process of manufacturing their crayons. But that was about to change. An elementary data analysis showed that the adhesive didn’t consistently set properly when the labels were dry. Misting crayons as they went... Continue Reading
In regression analysis, overfitting a model is a real problem. An overfit model can cause the regression coefficients, p-values, and R-squared to be misleading. In this post, I explain what an overfit model is and how to detect and avoid this problem. An overfit model is one that is too complicated for your data set. When this happens, the regression model becomes tailored to fit the quirks and... Continue Reading
Imagine a multi-million dollar company that released a product without knowing the probability that it will fail after a certain amount of time. “We offer a 2 year warranty, but we have no idea what percentage of our products fail before 2 years.” Crazy, right? Anybody who wanted to ensure the quality of their product would perform a statistical analysis to look at the reliability and survival of... Continue Reading
If you want to use data to predict the impact of different variables, whether it's for business or some personal interest, you need to create a model based on the best information you have at your disposal. In this post and subsequent posts throughout the football season, I'm going to share how I've been developing and applying a model for predicting the outcomes of 4th down decisions in Big... Continue Reading
Statisticians say the darndest things. At least, that's how it can seem if you're not well-versed in statistics.  When I began studying statistics, I approached it as a language. I quickly noticed that compared to other disciplines, statistics has some unique problems with terminology, problems that don't affect most scientific and academic specialties.  For example, dairy science has a highly... Continue Reading
Just 100 years ago, very few statistical tools were available and the field was largely unknown. Since then, there has been an explosion of tools available, as well as ever-increasing awareness and use of statistics.   While most readers of the Minitab Blog are looking to pick up new tools or improve their use of commonly-applied ones, I thought it would be worth stepping back and talking about one... Continue Reading
Previously, I’ve written about how to interpret regression coefficients and their individual P values. I’ve also written about how to interpret R-squared to assess the strength of the relationship between your model and the response variable. Recently I've been asked, how does the F-test of the overall significance and its P value fit in with these other statistics? That’s the topic of this post! In... Continue Reading
In my previous post, I showed you that the coefficients are different when choosing (-1,0,1) vs (1,0) coding schemes for General Linear Model (or Regression).  We used the two different equations to calculate the same fitted values. Here I will focus on showing what the different coefficients represent.  Let's use the data and models from the last blog post: We can display the means for each level... Continue Reading