dcsimg
 

Regression Analysis

Blog posts and articles about regression analysis methods applied to Lean and Six Sigma projects.

by Matthew Barsalou, guest blogger At the end of the first part of this story, a group of evil trouble-making chickens had convinced all of their fellow chickens to march on the walled city of Wetzlar, where, said the evil chickens, they all would be much happier than they were on the farm. The chickens marched through the night and arrived at Wetzlar on the Lahn as the sun came up. “Let us in!”... Continue Reading
The Six Sigma quality improvement methodology has lasted for decades because it gets results. Companies in every country around the world, and in every industry, have used this logical, step-by-step method to improve the quality of their processes, products, and services. And they've saved billions of dollars along the way. However, Six Sigma involves a good deal of statistics and data analysis,... Continue Reading

7 Deadly Statistical Sins Even the Experts Make

Do you know how to avoid them?

Get the facts >
In April 2017, overbooking of flight seats hit the headlines when a United Airlines customer was dragged off a flight. A TED talk by Nina Klietsch gives a good, but simplistic explanation of why overbooking is so attractive to airlines. Overbooking is not new to the airlines; these strategies were officially sanctioned by The American Civil Aeronautics Board in 1965, and since that time complex... Continue Reading
There may not be a situation more perilous than being a character on Game of Thrones. Warden of the North, Hand of the King, and apparent protagonist of the entire series? Off with your head before the end of the first season! Last male heir of a royal bloodline? Here, have a pot of molten gold poured on your head! Invited to a wedding? Well, you probably know what happens at weddings in the show. ... Continue Reading
Previously, I’ve written about when to choose nonlinear regression and how to model curvature with both linear and nonlinear regression. Since then, I’ve received several comments expressing confusion about what differentiates nonlinear equations from linear equations. This confusion is understandable because both types can model curves. So, if it’s not the ability to model a curve, what isthe... Continue Reading
One of the biggest pieces of international news last year was the so-called "Brexit" referendum, in which a majority of voters in the United Kingdom cast their ballots to leave the European Union (EU). That outcome shocked the world. Follow-up media coverage has asserted that the younger generation prefers to remain in the EU since that means more opportunities on the continent. The older... Continue Reading
"Data! Data! Data! I can't make bricks without clay."  — Sherlock Holmes, in Arthur Conan Doyle's The Adventure of the Copper Beeches Whether you're the world's greatest detective trying to crack a case or a person trying to solve a problem at work, you're going to need information. Facts. Data, as Sherlock Holmes says.  But not all data is created equal, especially if you plan to analyze as part of... Continue Reading
As someone who has collected and analyzed real data for a living, the idea of using simulated data for a Monte Carlo simulation sounds a bit odd. How can you improve a real product with simulated data? In this post, I’ll help you understand the methods behind Monte Carlo simulation and walk you through a simulation example using Companion by Minitab. Companion by Minitab is a software platform that... Continue Reading
If you regularly perform regression analysis, you know that R2 is a statistic used to evaluate the fit of your model. You may even know the standard definition of R2: the percentage of variation in the response that is explained by the model. Fair enough. With Minitab Statistical Software doing all the heavy lifting to calculate your R2 values, that may be all you ever need to know. But if you’re... Continue Reading
Statistics can be challenging, especially if you're not analyzing data and interpreting the results every day. Statistical software makes things easier by handling the arduous mathematical work involved in statistics. But ultimately, we're responsible for correctly interpreting and communicating what the results of our analyses show. The p-value is probably the most frequently cited statistic. We... Continue Reading
Did you ever wonder why statistical analyses and concepts often have such weird, cryptic names? One conspiracy theory points to the workings of a secret committee called the ICSSNN. The International Committee for Sadistic Statistical Nomenclature and Numerophobia was formed solely to befuddle and subjugate the masses. Its mission: To select the most awkward, obscure, and confusing name possible... Continue Reading
The language of statistics is a funny thing, but there usually isn't much to laugh at in the consequences that can follow when misunderstandings occur between statisticians and non-statisticians. We see these consequences frequently in the media, when new studies—that usually contradict previous ones—are breathlessly related, as if their findings were incontrovertible facts. Similar, though less... Continue Reading
Dear Readers, As 2016 comes to a close, it’s time to reflect on the passage of time and changes. As I’m sure you’ve guessed, I love statistics and analyzing data! I also love talking and writing about it. In fact, I’ve been writing statistical blog posts for over five years, and it’s been an absolute blast. John Tukey, the renowned statistician, once said, “The best thing about being a statistician... Continue Reading
by Matt Barsalou, guest blogger I know that Thanksgiving is always on the last Thursday in November, but somehow I failed to notice it was fast approaching until the Monday before Thanksgiving. This led to frantically sending a last-minute invitation, and a hunt for a turkey. I live in Germany and this greatly complicated the matter. Not only is Thanksgiving not celebrated, but also actual turkeys... Continue Reading
This week we’re celebrating the annual Thanksgiving holiday in the United States, which is not only a good time to reflect on the things we’re grateful for, but it’s also a good time to stuff yourself with turkey, mashed potatoes, green bean casserole, and the usual suspects that find their way to the Thanksgiving table! While I’m of course very thankful for my family, friends, home, etc., I’m also... Continue Reading
Data mining can be helpful in the exploratory phase of an analysis. If you're in the early stages and you're just figuring out which predictors are potentially correlated with your response variable, data mining can help you identify candidates. However, there are problems associated with using data mining to select variables. In my previous post, we used data mining to settle on the following... Continue Reading
Since the release of Minitab Express in 2014, we’ve often received questions in technical support about the differences between Express and Minitab 17.  In this post, I’ll attempt to provide a comparison between these two Minitab products. What Is Minitab 17? Minitab 17 is an all-in-one graphical and statistical analysis package that includes basic analysis tools such as hypothesis testing,... Continue Reading
October 16–22 is National Healthcare Quality Week, started by the National Association for Healthcare Quality to increase awareness of healthcare quality programs and to highlight the work of healthcare quality professionals and their influence on improved patient care outcomes. This event deserves your attention because the quality of healthcare affects every one of us, and so does the cost of... Continue Reading
If you were among the 300 people who attended the first-ever Minitab Insights conference in September, you already know how powerful it was. Attendees learned how practitioners from a wide range of industries use data analysis to address a variety of problems, find solutions, and improve business practices. In the coming weeks and months, we will share more of the great insights and guidance shared... Continue Reading
Face it, you love regression analysis as much as I do. Regression is one of the most satisfying analyses in Minitab: get some predictors that should have a relationship to a response, go through a model selection process, interpret fit statistics like adjusted R2 and predicted R2, and make predictions. Yes, regression really is quite wonderful. Except when it’s not. Dark, seedy corners of the data... Continue Reading