dcsimg
 

Six Sigma

Blog posts and articles about applying data analysis and statistical methods to Six Sigma quality improvement projects.

The Six Sigma quality improvement methodology has lasted for decades because it gets results. Companies in every country around the world, and in every industry, have used this logical, step-by-step method to improve the quality of their processes, products, and services. And they've saved billions of dollars along the way. However, Six Sigma involves a good deal of statistics and data analysis,... Continue Reading
Six Sigma is a quality improvement method that businesses have used for decades—because it gets results. A Six Sigma project follows a clearly defined series of steps, and companies in every industry in every country around the world have used this method to resolve problems. Along the way, they've saved billions of dollars. But Six Sigma relies heavily on statistics and data analysis, and many... Continue Reading

MINITAB INSIGHTS CONFERENCE 2017

Chicago, IL | 11-12 September, 2017

BUILD SKILLS. EXCHANGE IDEAS. DEVELOP COMMUNITY.

Register by July 20 for a $100 discount!

LEARN MORE! >>
 
The two previous posts in this series focused on manipulating data using Minitab’s calculator and the Data menu. In this third and final post, we continue to explore helpful features for working with text data and will focus on some features in Minitab’s Editor menu. Using the Editor Menu  The Editor menu is unique in that the options displayed depend on what is currently active (worksheet, graph,... Continue Reading
Suppose that you plan to source a substantial amount of parts or subcomponents from a new supplier. To ensure that their quality level is acceptable to you, you might want to assess the capability levels (Ppk and Cpk indices) of their manufacturing processes and check whether their critical process parameters are fully under control (using control charts). If you are not sure about the efficiency... Continue Reading
For a process improvement practitioner, finishing the Control Phase of the DMAIC process is your ticket to move on to your next project. You’ve done an excellent job leading the project team because they identified root causes, developed and implemented solutions to resolve those root causes, put a control plan in place and transitioned the process back to the Process Owner. Soon, however, you... Continue Reading
Companion by Minitab® is our software for executing and reporting on quality improvement projects. It consists of a desktop app, which practitioners use to do project work, and a web app, which includes a customizable dashboard that offers stakeholders up-to-the-minute graphical summaries and reports. Since the desktop app automatically updates the dashboard as teams do their work, teams are freed... Continue Reading
Companion by Minitab® is our software for executing and reporting on quality improvement projects. It has two components, a desktop app and a web app. As practitioners use the Companion desktop app to do project work, their project information automatically rolls up to Companion’s web app dashboard, where stakeholders can see graphical summaries and reports. Since the dashboard updates... Continue Reading
It's a very exciting time at Minitab's offices around the world because we've just announced the availability of Minitab® 18 Statistical Software. Data is everywhere today, but to use it to make sound, strategic business decisions, you need to have tools that turn that data into knowledge and insights. We've designed Minitab 18 to do exactly that.  We've incorporated a lot of new features, made some... Continue Reading
by Dan Wolfe, guest blogger How would you measure a hole that was allowed to vary one tenth the size of a human hair? What if the warmth from holding the part in your hand could take the measurement from good to bad? These are the types of problems that must be dealt with when measuring at the micron level. As a Six Sigma professional, that was the challenge I was given when Tenneco entered into... Continue Reading
Control charts are excellent tools for looking at data points that seem unusual and for deciding whether they're worthy of investigation. If you use control charts frequently, then you're used to the idea that if certain subgroups reflect temporary abnormalities, you can leave them out when you calculate your center line and control limits. If you include points that you already know are... Continue Reading
Rare events inherently occur in all kinds of processes. In hospitals, there are medication errors, infections, patient falls, ventilator-associated pneumonias, and other rare, adverse events that cause prolonged hospital stays and increase healthcare costs.  But rare events happen in many other contexts, too. Software developers may need to track errors in lines of programming code, or a quality... Continue Reading
By some estimates, up to 70 percent of quality initiatives fail. Why do so many improvement programs, which are championed and staffed by smart, dedicated people, ultimately end up on the chopping block? According to the Juran Institute, which specializes in training, certification, and consulting on quality management, the No. 1 reason quality improvement initiatives fail is a lack of management... Continue Reading
As a member of Minitab's Technical Support team, I get the opportunity to work with many people creating control charts. They know the importance of monitoring their processes with control charts, but many don’t realize that they themselves could play a vital role in improving the effectiveness of the control charts.   In this post I will show you how to take control of your charts by using Minitab... Continue Reading
In the mid 1940s, Taiichi Ohno established the Toyota Production System, which is primarily based on eliminating non-value-added waste. He discovered that by reducing waste and inventory levels, problems get exposed and that forces employees to address these problems. To engage the workers and therefore improve processes, Ohno developed many exercises. One of his most popular exercises, “Stand in a... Continue Reading
One of the most memorable presentations at the inaugural Minitab Insights conference reminded me that data analysis and quality improvement methods aren't only useful in our work and businesses: they can make our home life better, too.  The presenter, a continuous improvement training program manager at an aviation company in the midwestern United States, told attendees how he used Minitab... Continue Reading
In ancient times dragons were believed to be set by the gods to guard golden treasures. This is because dragons were the most fearsome creatures and would deter would-be thieves. Dragons typically lived in an underground lair or castle and would sleep on top of their gold and treasures.  They were terrifying and often depicted as large fire-breathing, scaly creatures with wings and a huge deadly... Continue Reading
Choosing the right type of subgroup in a control chart is crucial. In a rational subgroup, the variability within a subgroup should encompass common causes, random, short-term variability and represent “normal,” “typical,” natural process variations, whereas differences between subgroups are useful to detect drifts in variability over time (due to “special” or “assignable” causes). Variation within... Continue Reading
You run a capability analysis and your Cpk is bad. Now what? First, let’s start by defining what “bad” is. In simple terms, the smaller the Cpk, the more defects you have. So the larger your Cpk is, the better. Many practitioners use a Cpk of 1.33 as the gold standard, so we’ll treat that as the gold standard here, too. Suppose we collect some data and run a capability analysis using Minitab Statisti... Continue Reading
In Part 1 of Gauging Gage, I looked at how adequate a sampling of 10 parts is for a Gage R&R Study and providing some advice based on the results. Now I want to turn my attention to the other two factors in the standard Gage experiment: 3 operators and 2 replicates.  Specifically, what if instead of increasing the number of parts in the experiment (my previous post demonstrated you would need... Continue Reading
by Kevin Clay, guest blogger In transactional or service processes, we often deal with lead-time data, and usually that data does not follow the normal distribution. Consider a Lean Six Sigma project to reduce the lead time required to install an information technology solution at a customer site. It should take no more than 30 days—working 10 hours per day Monday–Friday—to complete, test and... Continue Reading