dcsimg
 

Stats

Blog posts and articles about statistics principles and how they apply to quality improvement methods like Lean and Six Sigma.

Easy access to the right tools makes any task easier. That simple idea has made the Swiss Army knife essential for adventurers: just one item in your pocket gives you instant access to dozens of tools when you need them.   If your current adventures include analyzing data, the multifaceted Editor menu in Minitab Statistical Software is just as essential. Minitab’s Dynamic Editor Menu Whether you’re... Continue Reading
It's a very exciting time at Minitab's offices around the world because we've just announced the availability of Minitab® 18 Statistical Software. Data is everywhere today, but to use it to make sound, strategic business decisions, you need to have tools that turn that data into knowledge and insights. We've designed Minitab 18 to do exactly that.  We've incorporated a lot of new features, made some... Continue Reading

7 Deadly Statistical Sins Even the Experts Make

Do you know how to avoid them?

Get the facts >
One highlight of writing for and editing the Minitab Blog is the opportunity to read your responses and answer your questions. Sometimes, to my chagrin, you point out that we've made a mistake. However, I'm particularly grateful for those comments, because it permits us to correct inadvertent errors.  I feared I had an opportunity to fix just such an error when I saw this comment appear on one of... Continue Reading
"Data! Data! Data! I can't make bricks without clay."  — Sherlock Holmes, in Arthur Conan Doyle's The Adventure of the Copper Beeches Whether you're the world's greatest detective trying to crack a case or a person trying to solve a problem at work, you're going to need information. Facts. Data, as Sherlock Holmes says.  But not all data is created equal, especially if you plan to analyze as part of... Continue Reading
Choosing the right type of subgroup in a control chart is crucial. In a rational subgroup, the variability within a subgroup should encompass common causes, random, short-term variability and represent “normal,” “typical,” natural process variations, whereas differences between subgroups are useful to detect drifts in variability over time (due to “special” or “assignable” causes). Variation within... Continue Reading
You run a capability analysis and your Cpk is bad. Now what? First, let’s start by defining what “bad” is. In simple terms, the smaller the Cpk, the more defects you have. So the larger your Cpk is, the better. Many practitioners use a Cpk of 1.33 as the gold standard, so we’ll treat that as the gold standard here, too. Suppose we collect some data and run a capability analysis using Minitab Statisti... Continue Reading
In Part 1 of Gauging Gage, I looked at how adequate a sampling of 10 parts is for a Gage R&R Study and providing some advice based on the results. Now I want to turn my attention to the other two factors in the standard Gage experiment: 3 operators and 2 replicates.  Specifically, what if instead of increasing the number of parts in the experiment (my previous post demonstrated you would need... Continue Reading
"You take 10 parts and have 3 operators measure each 2 times." This standard approach to a Gage R&R experiment is so common, so accepted, so ubiquitous that few people ever question whether it is effective.  Obviously one could look at whether 3 is an adequate number of operators or 2 an adequate number of replicates, but in this first of a series of posts about "Gauging Gage," I want to look at... Continue Reading
Everyone who analyzes data regularly has the experience of getting a worksheet that just isn't ready to use. Previously I wrote about tools you can use to clean up and eliminate clutter in your data and reorganize your data.  In this post, I'm going to highlight tools that help you get the most out of messy data by altering its characteristics. Know Your Options Many problems with data don't become... Continue Reading
You've collected a bunch of data. It wasn't easy, but you did it. Yep, there it is, right there...just look at all those numbers, right there in neat columns and rows. Congratulations. I hate to ask...but what are you going to do with your data? If you're not sure precisely what to do with the data you've got, graphing it is a great way to get some valuable insight and direction. And a good graph to... Continue Reading
In my last post, I wrote about making a cluttered data set easier to work with by removing unneeded columns entirely, and by displaying just those columns you want to work with now. But too much unneeded data isn't always the problem. What can you do when someone gives you data that isn't organized the way you need it to be?   That happens for a variety of reasons, but most often it's because the... Continue Reading
In its industry guidance to companies that manufacture drugs and biological products for people and animals, the Food and Drug Administration (FDA) recommends three stages for process validation: Process Design, Process Qualification, and Continued Process Verification. In this post, we we will focus on that third stage. Stage 3: Continued Process Verification Per the FDA guidelines, the goal of... Continue Reading
People can make mistakes when they test a hypothesis with statistical analysis. Specifically, they can make either Type I or Type II errors. As you analyze your own data and test hypotheses, understanding the difference between Type I and Type II errors is extremely important, because there's a risk of making each type of error in every analysis, and the amount of risk is in your control.    So if... Continue Reading
Welcome to the Hypothesis Test Casino! The featured game of the house is roulette. But this is no ordinary game of roulette. This is p-value roulette! Here’s how it works: We have two roulette wheels, the Null wheel and the Alternative wheel. Each wheel has 20 slots (instead of the usual 37 or 38). You get to bet on one slot. What happens if the ball lands in the slot you bet on? Well, that depends... Continue Reading
Like many, my introduction to 17th-century French philosophy came at the tender age of 3+. For that is when I discovered the Etch-a-Sketch®, an entertaining ode to Descartes' coordinate plane. Little did I know that the seemingly idle hours I spent doodling on my Etch-a-Sketch would prove to be excellent training for the feat that I attempt today: plotting an Empirical Cumulative Distribution... Continue Reading
My colleague Cody Steele wrote a post that illustrated how the same set of data can appear to support two contradictory positions. He showed how changing the scale of a graph that displays mean and median household income over time drastically alters the way it can be interpreted, even though there's no change in the data being presented. When we analyze data, we need to present the results in... Continue Reading
Right now I’m enjoying my daily dose of morning joe. As the steam rises off the cup, the dark rich liquid triggers a powerful enzyme cascade that jump-starts my brain and central nervous system, delivering potent glints of perspicacity into the dark crevices of my still-dormant consciousness. Feels good, yeah! But is it good for me? Let’s see what the studies say… Drinking more than 4 cups of coffee... Continue Reading
Statistics can be challenging, especially if you're not analyzing data and interpreting the results every day. Statistical software makes things easier by handling the arduous mathematical work involved in statistics. But ultimately, we're responsible for correctly interpreting and communicating what the results of our analyses show. The p-value is probably the most frequently cited statistic. We... Continue Reading
Histograms are one of the most common graphs used to display numeric data. Anyone who takes a statistics course is likely to learn about the histogram, and for good reason: histograms are easy to understand and can instantly tell you a lot about your data. Here are three of the most important things you can learn by looking at a histogram.  Shape—Mirror, Mirror, On the Wall… If the left side of a... Continue Reading
by Matthew Barsalou, guest blogger.  The old saying “if it walks like a duck, quacks like a duck and looks like a duck, then it must be a duck” may be appropriate in bird watching; however, the same idea can’t be applied when observing a statistical distribution. The dedicated ornithologist is often armed with binoculars and a field guide to the local birds and this should be sufficient. A... Continue Reading