dcsimg
 

Stats

Blog posts and articles about statistics principles and how they apply to quality improvement methods like Lean and Six Sigma.

In my last post on DMAIC tools for the Define phase, we reviewed various graphs and stats typically used to define project goals and customer deliverables. Let’s now move along to the tools you can use in Minitab Statistical Software to conduct the Measure phase. Measure Phase Methodology The goal of this phase is to measure the process to determine its current performance and quantify the problem.... Continue Reading
When you’re working in Minitab and prepping your data for analysis, it’s common to group data into categories that imply a specific order, such as Low, Medium, High or Beginning, Middle, End. But if the data were to appear in a different order in tables and graphs (for example, Beginning, End, Middle), the result could be confusing, and might distract from your message. Fortunately, with Minitab’s va... Continue Reading

7 Deadly Statistical Sins Even the Experts Make

Do you know how to avoid them?

Sign Up Today >
As we enter late December, snow is falling here on the East Coast of the United States. The official start to winter is on December 21, 2016, but it’s certainly not uncommon to see snowflakes flying before this date. If you live in the U.S., you know the winter of 2015 was one for the record books. In fact, more than 90 inches of snow fell in Boston in the winter of 2015! Have you ever wondered how... Continue Reading
If you’re familiar with Lean Six Sigma, then you’re familiar with DMAIC. DMAIC is the acronym for Define, Measure, Analyze, Improve and Control. This proven problem-solving strategy provides a structured 5-phase framework to follow when working on an improvement project. This is the first post in a five-part series that focuses on the tools available in Minitab Statistical Software that are most... Continue Reading
Dear Readers, As 2016 comes to a close, it’s time to reflect on the passage of time and changes. As I’m sure you’ve guessed, I love statistics and analyzing data! I also love talking and writing about it. In fact, I’ve been writing statistical blog posts for over five years, and it’s been an absolute blast. John Tukey, the renowned statistician, once said, “The best thing about being a statistician... Continue Reading
In Part 1 of this blog series, I wrote about how statistical inference uses data from a sample of individuals to reach conclusions about the whole population. That’s a very powerful tool, but you must check your assumptions when you make statistical inferences. Violating any of these assumptions can result in false positives or false negatives, thus invalidating your results.  The common data... Continue Reading
With another Halloween almost upon us, here's a look back at some of the posts we've written about this holiday specifically, and about various creepy things in general. I hope that you enjoy this roundup of 13 scary statistics posts...and that they won't keep you up at night! 1. How to Make Minitab Wear a Halloween Costume As Halloween nears, you can customize your Minitab interface to match the... Continue Reading
Statistical inference uses data from a sample of individuals to reach conclusions about the whole population. It’s a very powerful tool. But as the saying goes, “With great power comes great responsibility!” When attempting to make inferences from sample data, you must check your assumptions. Violating any of these assumptions can result in false positives or false negatives, thus invalidating... Continue Reading
Since the release of Minitab Express in 2014, we’ve often received questions in technical support about the differences between Express and Minitab 17.  In this post, I’ll attempt to provide a comparison between these two Minitab products. What Is Minitab 17? Minitab 17 is an all-in-one graphical and statistical analysis package that includes basic analysis tools such as hypothesis testing,... Continue Reading
The ultimate goal of most quality improvement projects is clear: reducing the number of defects, improving a response, or making a change that benefits your customers. We often want to jump right in and start gathering and analyzing data so we can solve the problems. Checking your measurement systems first, with methods like attribute agreement analysis or Gage R&R, may seem like a needless waste... Continue Reading
We’ve got a plethora of case studies showing how businesses from different industries solve problems and implement solutions with data analysis. Take a look for ideas about how you can use data analysis to ensure excellence at your business! Boston Scientific, one of the world’s leading developers of medical devices, is just one organization who has shared their story. A team at their Heredia,... Continue Reading
Data mining uses algorithms to explore correlations in data sets. An automated procedure sorts through large numbers of variables and includes them in the model based on statistical significance alone. No thought is given to whether the variables and the signs and magnitudes of their coefficients make theoretical sense. We tend to think of data mining in the context of big data, with its huge... Continue Reading
In regression, "sums of squares" are used to represent variation. In this post, we’ll use some sample data to walk through these calculations. The sample data used in this post is available within Minitab by choosing Help > Sample Data, or File > Open Worksheet > Look in Minitab Sample Data folder (depending on your version of Minitab).  The dataset is called ResearcherSalary.MTW, and contains data... Continue Reading
See if this sounds fair to you. I flip a coin. Heads: You win $1.Tails: You pay me $1. You may not like games of chance, but you have to admit it seems like a fair game. At least, assuming the coin is a normal, balanced coin, and assuming I’m not a sleight-of-hand magician who can control the coin. How about this next game? You pay me $2 to play.I flip a coin over and over until it comes up heads.Your... Continue Reading
Figures lie, so they say, and liars figure. A recent post at Ben Orlin's always-amusing mathwithbaddrawings.com blog nicely encapsulates why so many people feel wary about anything related to statistics and data analysis. Do take a moment to check it out, it's a fast read. In all of the scenarios Orlin offers in his post, the statistical statements are completely accurate, but the person offering... Continue Reading
Often, when we start analyzing new data, one of the very first things we look at is whether certain pairs of variables are correlated. Correlation can tell if two variables have a linear relationship, and the strength of that relationship. This makes sense as a starting point, since we're usually looking for relationships and correlation is an easy way to get a quick handle on the data set we're... Continue Reading
Have you ever accidentally done statistics? Not all of us can (or would want to) be “stat nerds,” but the word “statistics” shouldn’t be scary. In fact, we all analyze things that happen to us every day. Sometimes we don’t realize that we are compiling data and analyzing it, but that’s exactly what we are doing. Yes, there are advanced statistical concepts that can be difficult to understand—but... Continue Reading
While some posts in our Minitab blog focus on understanding t-tests and t-distributions this post will focus more simply on how to hand-calculate the t-value for a one-sample t-test (and how to replicate the p-value that Minitab gives us).  The formulas used in this post are available within Minitab Statistical Software by choosing the following menu path: Help > Methods and Formulas > Basic... Continue Reading
If you've used our software, you’re probably used to many of the things you can do in Minitab once you’ve fit a model. For example, after you fit a response to a given model for some predictors with Stat > DOE > Response Surface > Analyze Response Surface Design, you can do the following: Predict the mean value of the response variable for new combinations of settings of the predictors. Draw... Continue Reading
Earlier this month, PLOS.org published an article titled "Ten Simple Rules for Effective Statistical Practice." The 10 rules are good reading for anyone who draws conclusions and makes decisions based on data, whether you're trying to extend the boundaries of scientific knowledge or make good decisions for your business.  Carnegie Mellon University's Robert E. Kass and several co-authors devised... Continue Reading