dcsimg
 

T-Test

Blog posts and articles about using the statistical T-Test to assess a hypothesis.

by Matthew Barsalou, guest blogger Once upon a time, in the Kingdom of Wetzlar, there was a farm with over a thousand chickens, two pigs, and a cow. The chickens were well treated, but a few rabble-rousers among them got the rest of the chickens worked up. These trouble-making chickens looked almost like the other chickens, but in fact they were evil chickens.  By HerbertT - Eigenproduktion, CC... Continue Reading
The Six Sigma quality improvement methodology has lasted for decades because it gets results. Companies in every country around the world, and in every industry, have used this logical, step-by-step method to improve the quality of their processes, products, and services. And they've saved billions of dollars along the way. However, Six Sigma involves a good deal of statistics and data analysis,... Continue Reading

MINITAB INSIGHTS CONFERENCE 2017

Chicago, IL | 11-12 September, 2017

BUILD SKILLS. EXCHANGE IDEAS. DEVELOP COMMUNITY.

Register by July 20 for a $100 discount!

LEARN MORE! >>
 
One highlight of writing for and editing the Minitab Blog is the opportunity to read your responses and answer your questions. Sometimes, to my chagrin, you point out that we've made a mistake. However, I'm particularly grateful for those comments, because it permits us to correct inadvertent errors.  I feared I had an opportunity to fix just such an error when I saw this comment appear on one of... Continue Reading
"Data! Data! Data! I can't make bricks without clay."  — Sherlock Holmes, in Arthur Conan Doyle's The Adventure of the Copper Beeches Whether you're the world's greatest detective trying to crack a case or a person trying to solve a problem at work, you're going to need information. Facts. Data, as Sherlock Holmes says.  But not all data is created equal, especially if you plan to analyze as part of... Continue Reading
If you regularly perform regression analysis, you know that R2 is a statistic used to evaluate the fit of your model. You may even know the standard definition of R2: the percentage of variation in the response that is explained by the model. Fair enough. With Minitab Statistical Software doing all the heavy lifting to calculate your R2 values, that may be all you ever need to know. But if you’re... Continue Reading
You've collected a bunch of data. It wasn't easy, but you did it. Yep, there it is, right there...just look at all those numbers, right there in neat columns and rows. Congratulations. I hate to ask...but what are you going to do with your data? If you're not sure precisely what to do with the data you've got, graphing it is a great way to get some valuable insight and direction. And a good graph to... Continue Reading
Welcome to the Hypothesis Test Casino! The featured game of the house is roulette. But this is no ordinary game of roulette. This is p-value roulette! Here’s how it works: We have two roulette wheels, the Null wheel and the Alternative wheel. Each wheel has 20 slots (instead of the usual 37 or 38). You get to bet on one slot. What happens if the ball lands in the slot you bet on? Well, that depends... Continue Reading
Statistics can be challenging, especially if you're not analyzing data and interpreting the results every day. Statistical software makes things easier by handling the arduous mathematical work involved in statistics. But ultimately, we're responsible for correctly interpreting and communicating what the results of our analyses show. The p-value is probably the most frequently cited statistic. We... Continue Reading
To make objective decisions about the processes that are critical to your organization, you often need to examine categorical data. You may know how to use a t-test or ANOVA when you’re comparing measurement data (like weight, length, revenue, and so on), but do you know how to compare attribute or counts data? It easy to do with statistical software like Minitab.  One person may look at this bar... Continue Reading
Histograms are one of the most common graphs used to display numeric data. Anyone who takes a statistics course is likely to learn about the histogram, and for good reason: histograms are easy to understand and can instantly tell you a lot about your data. Here are three of the most important things you can learn by looking at a histogram.  Shape—Mirror, Mirror, On the Wall… If the left side of a... Continue Reading
Dear Readers, As 2016 comes to a close, it’s time to reflect on the passage of time and changes. As I’m sure you’ve guessed, I love statistics and analyzing data! I also love talking and writing about it. In fact, I’ve been writing statistical blog posts for over five years, and it’s been an absolute blast. John Tukey, the renowned statistician, once said, “The best thing about being a statistician... Continue Reading
In Part 1 of this blog series, I wrote about how statistical inference uses data from a sample of individuals to reach conclusions about the whole population. That’s a very powerful tool, but you must check your assumptions when you make statistical inferences. Violating any of these assumptions can result in false positives or false negatives, thus invalidating your results.  The common data... Continue Reading
If you’re not a statistician, looking through statistical output can sometimes make you feel a bit like Alice in Wonderland. Suddenly, you step into a fantastical world where strange and mysterious phantasms appear out of nowhere.   For example, consider the T and P in your t-test results. “Curiouser and curiouser!” you might exclaim, like Alice, as you gaze at your output. What are these values,... Continue Reading
Statistical inference uses data from a sample of individuals to reach conclusions about the whole population. It’s a very powerful tool. But as the saying goes, “With great power comes great responsibility!” When attempting to make inferences from sample data, you must check your assumptions. Violating any of these assumptions can result in false positives or false negatives, thus invalidating... Continue Reading
I watched an old motorcycle flick from the 1960s the other night, and I was struck by the bikers' slang. They had a language all their own. Just like statisticians, whose manner of speaking often confounds those who aren't hep to the lingo of data analysis. It got me thinking...what if there were an all-statistician biker gang? Call them the Nulls Angels. Imagine them in their colors, tearing... Continue Reading
True or false: When comparing a parameter for two sets of measurements, you should always use a hypothesis test to determine whether the difference is statistically significant. The answer? (drumroll...) True! ...and False! To understand this paradoxical answer, you need to keep in mind the difference between samples, populations, and descriptive and inferential statistics.  Descriptive Statistics and... Continue Reading
So the data you nurtured, that you worked so hard to format and make useful, failed the normality test. Time to face the truth: despite your best efforts, that data set is never going to measure up to the assumption you may have been trained to fervently look for. Your data's lack of normality seems to make it poorly suited for analysis. Now what? Take it easy. Don't get uptight. Just let your data... Continue Reading
While some posts in our Minitab blog focus on understanding t-tests and t-distributions this post will focus more simply on how to hand-calculate the t-value for a one-sample t-test (and how to replicate the p-value that Minitab gives us).  The formulas used in this post are available within Minitab Statistical Software by choosing the following menu path: Help > Methods and Formulas > Basic... Continue Reading
Earlier this month, PLOS.org published an article titled "Ten Simple Rules for Effective Statistical Practice." The 10 rules are good reading for anyone who draws conclusions and makes decisions based on data, whether you're trying to extend the boundaries of scientific knowledge or make good decisions for your business.  Carnegie Mellon University's Robert E. Kass and several co-authors devised... Continue Reading
What does the eyesight of a homeless person have in common with complications from dental anesthesia?  Or with reducing side-effects from cancer? Or monitoring artificial hip implants? These are all subjects of recently published studies that use statistical analyses in Minitab to improve healthcare outcomes. And they're a good reminder  that when we improve the quality of healthcare for others, we... Continue Reading