요즘 제 기억력은 예전만 못합니다. 게다가 요즘 제 기억력은 예전만 못합니다.
하지만 제 심각한 '기억장애’ 보다 더 나쁜 건 지수 분포의 기억장애입니다.
신뢰성 분석을 위해 고장 데이터를 모델링할 때 지수 분포는 기억력이라는 게 아예 없어서 항목의 이전 실패에 대한 기록도 없거든요.
이는 나쁜 것처럼 들리지만 이 특성은 일관된 실패율을 나타내는 항목의 동작을 모형화하는 데 매우 유용합니다.
무작위로 수집한 항목 표본에 대해 고장까지의 시간을 추적하는 경우를 가정해보겠습니다. 히스토그램에 결과를 그래프로 나타내면 다음과 같이 표시됩니다.
보시다시피 시간이 경과할수록 특정한 시점에 실패하는 항목 수가 지속적으로 감소합니다. 이러한 지속적인 감소는 지수 곡선에도 잘 맞습니다.
감소가 일정하기때문에, 특정 시점 (t)에서 항목의 순간적인 고장 위험(즉, 위험 함수)을 그림으로 나타내려고 하면 어느 시점에서든 일정한 고장 위험이 도출될 것입니다.
즉, 이전 시점에서 항목의 실패는 다른 시점의 실패 위험에 영향을 주지 않습니다. 따라서 지수 분포는 지난 실패를 '기억'하지 못하는 이점이 있습니다. 지수 분포에서는 전날의 실패라는 짐 없이 매일 새롭게 시작할 수 있는 것이죠.
이러한 이유로 많은 경우 지수 분포는 신품이든 오래 되었든 관계없이 언제든지 고장날 수 있는 제품이나 부품에 대한 신뢰성 분석을 위한 효과적인 모형을 제공합니다. 그러한 항목은 의도한 애플리케이션으로 인해 노후화하거나 마모되지 않습니다. 제품 자체가 마모된 후에도 오랜 기간 마모되지 않는 구성품이 이러한 예에 해당합니다.
그러나 제품의 기대 수명이 끝나기 전에 구성품이 피로, 부식이나 마모될 것으로 예상되는 경우에는 시간이 지날수록 고장 위험이 증가하므로 지수 분포는 좋은 모델이 아닙니다.
지수 분포는 신뢰성 분석에서 고장 데이터를 모형화하는 데 자주 사용되는 여러 분포 중 하나일 뿐입니다. 데이터를 효과적으로 모형화하는 분포를 선택하는 것은 분석의 중요한 요건입니다.
Minitab의 분포 ID그림을 사용하여 여러 분포의 적합성을 평가할 수 있습니다(통계분석 > 신뢰성/생존 분석 > 분포 분석...). 점이 조정된 분포선을 따라 직선으로 떨어지면 분포의 적합성이 양호한 것입니다.
아래 그림은 지수 분포가 정규 분포보다 고장 데이터에 더 적합하다는 것을 명확하게 보여줍니다.
확률도를 사용하는 경우 데이터에 적합한 분포가 여러 개 있을 수 있습니다. 따라서 각 분포의 주요 특성과 일반적인 애플리케이션을 숙지하는 것이 분포를 선택하는 데 도움이 됩니다.
다행히 각 분포의 특성을 모두 기억할 필요는 없습니다. 대신 Minitab Support '신뢰성 분석의 지수 분포'의 심층적인 설명을 즐겨찾기에 추가해두고 소중한 뇌의 저장공간을 다른 중요한 일을 기억하는 데 쓰세요.
출시 기간과 제품 신뢰성이 경쟁력을 제공하는 급변하는 산업에서 세계 최고의 조명 회사 Signify(필립스 조명)가 어떻게 새로운 혁신을 신속하게 검증하는지 확인해 보십시오. 1시간 동안 진행되는 웹 세미나에서는 W.D. van Driel 교수와 P. Watté 박사가 Signify에서 Minitab Statistical Software를 사용하여 신뢰성을 위한 설계(DfR, Design for Reliability)에 대해 설명합니다. 실제 사례를 통해 개발 비용을 절감하고 설계의 성능과 컴플라이언스를 개선하며 제품 설계 안정성 테스트를 가속화하는 방법을 알아보세요. 향후 몇 년 동안 높은 사양을 충족할 수 있는 제품을 개발한다면 제품 고장 및 비용이 많이 드는 클레임의 위험과 결과를 줄일 수 있는 방법을 알 수 있을 것입니다. (웨비나는 영어로 진행됩니다.)